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Abstract— This paper presents a simulation study of the
problem of balancing a planar double pendulum in which the
lower body (the leg) has been modified to include a spring-
loaded passive prismatic joint. Robots of this kind can travel
by hopping, and can also stand and balance on a single point.
The purpose of this study is to investigate the degree to which a
balance controller can cope with the large and rapidly changing
forces from the spring. It is shown that good performance can
be achieved using an existing balance controller if the spring-
loaded joint is instrumented so that its position and velocity
can be taken into account when calculating the state variables
needed by the balance controller.

I. INTRODUCTION

This paper is part of a series on the design and construc-
tion of an experimental high-performance monopedal robot,
called Skippy [1], which uses springs to help it achieve high
hops. A new balance controller has already been developed
for Skippy, which can cope with the high-speed motions that
Skippy is intended to exhibit [2], [3]; and this controller has
already been demonstrated on a balancing-only precursor to
Skippy, called Tippy [4]. However, the interaction between
the balance controller and the springs has not yet been
investigated, and that is the topic of this paper.

Specifically, this paper investigates the following problem.
Given a planar inverted double pendulum in which the lower
body (the leg) has been replaced with a pair of bodies
(upper and lower leg) connected by a spring-loaded passive
prismatic joint (see Fig. 1), how well does the balance
controller described in [2], [3] cope with the spring, both in
the immediate aftermath of a landing and after the landing
transients have died away?

The decision to study only a planar system, rather than full
3D, can be justified by observing that hopping is a nearly
planar activity, so it makes sense to design the robot so that
the hopping movement (which includes the spring) is planar.

The main result of this paper is that the balance controller
in [2], [3] still works when the leg is springy, although the
performance is not as good as with a rigid leg, but the
position and velocity variables of the passive joint have to
be taken into account when calculating the state variables
needed by the balance controller.

The rest of this paper is organized as follows: first, a
review of relevant previous works; then the robot model; then
the theory of balancing used in this paper; then the balance
controller; and finally the simulation experiments and their
results.
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II. PREVIOUS WORKS

Hopping involves fast motions, so a balance controller
must be able to make fast motions while maintaining, re-
covering, or deliberately losing its balance. The problem of
robotic balancing on a point is known to be a solved problem,
but most existing solutions, such as [5], [6], [7], are not fast
enough for our application. More recent results, such as [8],
[9], show better performance, but require the robot to have
special features, such as reaction wheels.

Raibert’s original hopping machines [10] had an actuated
prismatic leg that was springy because of the use of a
pneumatic actuator; but these machines could only hop,
so balancing (without hopping) was not an issue. A more
recent robot, Salto [11], resembles a miniature, electrically
actuated Raibert-style hopping machine having an explicit
series elastic element to provide the springyness in the leg.
Salto has demonstrated its ability to balance as well as hop
[12] using the balance controller in [3], [4]. However, Salto’s
upper link is a reaction wheel, which means that the action
of balancing has negligible effect on the spring, and vice
versa.

The presence of a spring in the leg improves the machine’s
performance for walking or running activities by providing
the ability to store and release elastic energy. This allows
energy to be recycled efficiently from one step to the next,
and also increases the instantaneous peak power available.
The disadvantage is that it makes the control problem more
complicated. In locomotion applications, the Spring-Loaded
Inverted Pendulum (SLIP) model has proven itself to be
very useful [13]. Many studies using the SLIP model have
addressed the problem of controlling the transition from
flight to stance and from stance back to flight for performing
walking or running motions [14], [15], [16], [17]; but this is
different from the task of stopping, where there is a need to
remove kinetic energy quickly.

The problem of hopping with an asymmetric upper link
was studied from a control perspective by Poulakakis and
Grizzle [18]; while Batts et al. presented a 3D hopping
machine with a parallel spring, which is more controllable
than a series spring [19]. Their robot was able to perform
continuous hops for about seven seconds before losing
its balance. Xiong and Ames introduced a hopping and
landing solution for a bipedal robot named Cassie [20].
They described the mechanical compliance of the robot
leg by a virtual SLIP mechanism with nonlinear stiffness
(the nonlinearity being a function of the kinematics of the
leg). Then the prismatic motions of the virtual model are
optimized to produce the desired hop.



Fig. 1. Robot model. q3 is negative in this configuration, and has been
drawn as q3 + 2π.

The study of combined balancing and hopping on a general
planar double pendulum was pioneered by Berkemeier in
[21], and this was the inspiration for Azad’s later work in
[22], [23]. These works assume a rigid leg. However, in an
experiment that was never published, Azad repeated the work
on single hops in [22], but with the rigid leg replaced by a
springy one (i.e., the same arrangement as in Fig. 1, but with
different parameter values). Although the work was never
published, an animation of his result can be viewed at [1].
It can be seen that Azad’s controller works very well with a
springy leg. The study in this paper goes beyond Azad’s work
by using a faster, more responsive balance controller, and by
investigating the spring’s effect on the controller’s ability to
execute large, fast movements after the landing transient has
died away.

Finally, there is an important distinction between the work
presented here and that presented in [2], [3] on the topic of
balancing in the presence of other motions. In the earlier
work, the other motions were assumed to be known in
advance, and executed accurately by a motion controller, so
that the balance controller could be told in advance what
the movements would be, and hence make the robot lean in
anticipation of the balance disturbances that these motions
were expected to cause. In contrast, we consider here a
passive springy joint, which moves in response to the actions
of the balance controller, and therefore causes unanticipated
disturbances.

III. EXPERIMET SETUP

We consider two robots in this paper: one with a springy
leg and one with a rigid leg. The springy-leg robot is shown
in Fig. 1. The rigid-leg robot is obtained from the springy-leg
robot by locking joint 2 (the prismatic joint) in the position
it takes when the robot is balanced, the torso is at right
angles to the leg (q3 = 0), and the spring is holding the
weight of the upper leg and torso against gravity (specifically,
q2 = −0.01065m).

The springy-leg robot is a planar, three-link mechanism
in which links 1, 2 and 3 are the lower leg (or foot), upper
leg and torso, respectively. Joint 1 is a passive revolute joint

Link Mass Length CoM Inertia at CoM
(i) (kg) (m) (m) (kgm2)
1 0.2 0.2 0.1 0.0027
2 0.3 0.3 0.15 0.0150
3 2 0.5 0.33 0.0800

TABLE I
LENGTH AND INERTIA PARAMETERS OF THE ROBOT SHOWN IN FIG.1

.that models the contact between the foot and ground; joint
2 is a spring-loaded passive prismatic joint; and joint 3 is
the actuated joint. The links’ mass and length parameters
are shown in Table I. These values were chosen to resemble
the parameters of Skippy and Tippy. The symbols mi, li and
Ii appearing below denote the mass, length and rotational
inertia about the centre of mass (CoM), respectively, of link
i.

The joint variables are q1, q2 and q3. When all three are
zero, the leg is vertical, the leg’s length is l1+l2, and the torso
is horizontal out to the right. Positive motion of a revolute
joint i rotates link i counter-clockwise relative to link i− 1;
and positive motion of joint 2 extends the leg (so the actual
length of the leg is l1+ l2+ q2). In Fig. 1, q1 is positive and
q3 is negative.

The stiffness of the spring is 2000N/m, and the damping
coefficient is 15Ns/m, which results in an under-damped
system. The stiffness is appropriate for a robot able to
make small hops of around 1m with a spring compression
significantly less than l1, yet is soft enough that joint 2 moves
significantly during landings and fast balancing movements.
In other words, the stiffness is low enough to interfere
significantly with the actions of the balance controller.

Finally, the simulator uses an accurate model of compliant
frictional contact between the foot and the ground that allows
the foot both to slip and to lose contact with the ground. It
resembles the contact model described in [23]. Contact forces
acting on the foot in the normal and tangent directions are

Fy = max(0,Knz
3/2 +Dnz

1/2ż),
Fx = clip(Ktz

1/2u+Dtz
1/2u̇,−µFy, µFy),

(1)

where z and u are the ground compression and shear
deformation, and µ is the coefficient of friction, Kn and Dn

are the normal and Kt and Dt are the tangential stiffness
and damping coefficients. The function clip(a, b, c) returns
the value of a clipped to b and c. The parameter values used
in the simulations are

Kt = 12.7× 106 Dt = 3.1× 105 µ = 1
Kn = 8.5× 106 Dn = 3.1× 105

(2)

which are consistent with a hard floor and a high-friction
hard rubber foot.

IV. BALANCE THEORY

In this section, the analysis presented in [3] is modified
for the planar robot mechanism shown in Fig. 1. The upper
joint (joint 3) is actuated by the controller, the middle joint
(joint 2) is actuated by a spring, and the lower joint (joint 1)
represents the contact between the bottom of the lower link
(the foot) and the ground and is consequently un-actuated. By
representing the contact with a revolute joint, the controller



(but not the simulator) assumes that the foot neither slips nor
loses contact with the ground and that the movement of the
contact point as the foot rotates is negligible. The equation
of motion of this robot isH11 H12 H13

H12 H22 H23

H13 H23 H33

q̈1q̈2
q̈3

+

C1

C2

C3

 =

 0
τs
τ3

 (3)

where Hij are elements of the joint-space inertia matrix, q̈1,
q̈2 and q̈3 are the joint acceleration variables, C1, C2 and C3

contain gravity and velocity terms, τs = −Ksq2−Dsq̇2, Ks

and Ds denote the stiffness and damping coefficients of the
spring and τ3 is the torque at the actuated joint.

As joint one is un-actuated, it follows that the force of
gravity is the only force capable of exerting a moment about
the support point and change the angular momentum of the
robot about this point. If we define L to be the angular
momentum of the whole robot about the support point then
we have

L̇ = −mg cx (4)

where m is the total mass of the robot, g is the acceleration
due to gravity (a positive number), and cx is the x coordinate
of the robot’s center of mass (CoM). The expression −mg cx
is the moment of gravity about the support. The equation that
follows directly from (4) is

L̈ = −mg ċx (5)

and the expression for L is

L = H11 q̇1 +H12 q̇2 +H13 q̇3 (6)

which is proved in the appendix of [3].
The next step is to add a fictitious joint between joint one

and the ground, which is a prismatic joint in the x-direction.
We can call it joint zero so as not to disturb the numbering
of the other joints. This joint never moves, so it does not
affect the robot’s dynamics. However, it does increase the
size of the equation of motion, which now reads

H00 H01 H02 H03

H01 H11 H12 H13

H02 H12 H22 H23

H03 H13 H23 H33



0
q̈1
q̈2
q̈3

+


C0

C1

C2

C3

 =


τ0
0
τs
τ3

 (7)

The reason for this extra joint is that it provides us with two
equations linking the joint-space dynamics with the motion
of the CoM:

m ċx = H01 q̇1 +H02 q̇2 +H03 q̇3 (8)

and
τ0 = m c̈x = −

...
L/g (9)

Combining (5), (6) and (8) gives[
L

L̈

]
=

[
H11 H13

−g H01 −g H03

] [
q̇1
q̇3

]
+

[
H12

−g H02

]
q̇2.

(10)
We omit the last term (the one involving q̇2) in order to make
the point that the balance controller does not need to know

Fig. 2. Plant describing the dynamics of balancing. qa is the actuated joint
variable, which is q3 in Fig. 1.

about the dynamics introduced by the spring. The simplified
equation can then be solved to give[

q̇1
q̇3

]
=

1

g D

[
−g H03 −H13

g H01 H11

] [
L

L̈

]
(11)

where
D = H01H13 −H11H03 (12)

assuming that the matrix is invertible (which it will be if the
robot is physically capable of balancing [3]). Consequently
q̇3 can be expressed as

q̇3 = Y1 L+ Y2 L̈ (13)

where
Y1 =

H01

D
, Y2 =

H11

g D
(14)

Y1 and Y2 vary with configuration, and can be expressed
as simple functions of two physical properties of the mecha-
nism: its time constant of toppling, Tc, which measures how
quickly the robot falls if the controller does nothing, and its
velocity gain [24], [25], which measures the effect on centre
of mass (CoM) velocity of a unit change in the velocity of
the actuated joint. The formulae are

Y1 =
1

mg T 2
c Gv

Y2 = − 1

mgGv
(15)

where Gv is the linear velocity gain as defined in [25]. Tc
appears again in the acausal filter mentioned in the next
section.

V. BALANCE CONTROLLER

The balance controller works by controlling the plant
shown in Fig. 2, as explained in [2], [3]. The job of the
balance controller is to calculate a value for

...
L to make qa

follow a given command signal, qc, without losing balance.
Denoting qa := q3, a suitable control law to accomplish this
is ...

L := kddL̈+ kdL̇+ kLL+ kq(qa − u) , (16)

where u is the input to the control law (see below). The
feedback gains are obtained via pole placement as

kdd = −a3 kd = −a2 + a0Y2/Y1

kL = −a1 kq = −a0/Y1 ,
(17)

where
a0 = λ1λ2λ3λ4

a1 = −λ1λ2λ3 − λ1λ2λ4 − λ1λ3λ4 − λ2λ3λ4

a2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4

a3 = −λ1 − λ2 − λ3 − λ4

(18)



and λ1, . . . , λ4 are the chosen values of the poles. We set λ1
to the closed-loop bandwidth that we want the controller to
achieve, while λ2 and λ3 are destined to be cancelled by two
introduced zeros, mentioned below, and λ4 is set to −1/Tc
in order to cancel a natural zero in the transfer function.
The use of pole placement involves an assumption that Y1
and Y2 are constants, implying that the plant is linear. This
assumption is justified by the observation that in practice Y1
and Y2 vary slowly with configuration.

The input to the control law, u, is computed from the
command signal and its derivatives, qc, q̇c and q̈c, according
to

u = AF(qc − (λ2 + λ3)q̇c + λ2λ3q̈c) . (19)

This formula has two effects. First, it introduces two zeros
into the transfer function, at λ2 and λ3, which cancel the
corresponding poles. Second, it applies an acausal filter,
AF, which makes the robot lean in anticipation of the bal-
ance disturbances that will be caused by future commanded
motions [3]. Specifically, AF is a first-order low-pass filter
with time constant Tc, which runs backwards in time from
a point sufficiently far in the future back to the present.
To implement this filter, the controller needs to know the
expected short-term future value of qc. Information of this
kind can be found in the robot’s high-level controller, which
usually knows what movement it intends to make next.

Given the control law in (16), with gains as in (17) and
(18), and the input signal as in (19), it can be shown that the
complete transfer function from qc to qa would be

qa(s) =
1

1 + s/(−λ4)
qc(s) (20)

if it were really true that Y1 and Y2 were constants [3]. We
take this expression as the theoretical transfer function of the
balance controller, and compare the actual response with the
theoretical one in the experimental results reported below.

Finally, the output of the control law (
...
L) must be con-

verted to a torque or an acceleration at the actuated joint,
which can be done by solving the equations (7) and (9),

0 H01 H02 H0a

0 H11 H12 H1a

0 H21 H22 H2a

−1 Ha1 Ha2 Haa



τa
q̈1
q̈2
q̈a

 =


−

...
L/g − C0

−C1

τs − C2

−Ca

 . (21)

VI. SIMULATION EXPERIMENT

This section presents the results of a simulation experiment
in which the springy-leg robot starts in an upright position,
tips itself forward (positive x direction), crouches, launches
into a hop of 0.5m length and 0.62m height (measured as the
rise of the CoM), lands with a single bounce, stabilizes itself
in a balanced configuration with qa = 0, and then executes
a motion command consisting of a sequence of ramps and
sinusoids.

The complete motion can be seen in the accompanying
video. However, the initial part of this action sequence, from
the beginning up to the moment of first landing, are outside
the scope of this paper, and will not be discussed. They

Fig. 3. Evolution of the controller’s state variables from the moment
of landing until the robot has settled. The shaded zone shows the time
interval during which the foot has lost contact with the ground because of
the bounce.

employ control systems different from the one presented in
this paper.

In this experiment we use the ode23t integrator from
MATLAB with a relative tolerance set to 10−6 and other
parameters at their default values. The controller is imple-
mented as a continuous-dynamics subsystem, and the sensors
are assumed to be perfect. Although the balance controller
assumes that the foot never loses contact nor slips with the
ground, in the simulation we incorporate the contact model
described at the end of section III.

The balance controller is switched on at the moment of the
first landing, which occurs at t = 2.374s; and the subsequent
evolution of the controller’s state variables during the settling
period is plotted in Fig. 3. At this phase, the poles of the
controller are set to −20,−7,−7,−1/Tc, all in units of rad/s,
to produce a bounce after the first touchdown in order to
demonstrate the controller’s response to situations when it’s
assumption about the ground foot contact is not satisfied for
short periods (bounces). In the graph it can be seen that q3
is initially pushed to about −0.18rad by the momentum of
the landing, then rises to nearly 0.19rad during the bounce
(shaded area). After the second touchdown, the joint is driven
close to zero.

The robot’s foot loses contact with the ground briefly
between t = 2.5091s and t = 2.7182s and reaches a
maximum height of 5.0973cm. This period is shown shaded
in the graph. During this period, the balance controller does
not know that the foot has left the ground, and continues
to use the model described in Section IV, which assumes
that the robot’s foot is on the ground. It can be seen that
this short period of flight does not significantly affect the
controller. It can also be seen that the robot has come to
rest within about 0.48s of the second landing. Note that the
controller is assumed to know the orientation of the robot at
all times, e.g. from an onboard inertial measurement unit, so
it always knows the correct values of q1 and q̇1.
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Fig. 4. Tracking performance of the balance controller

Fig. 5. Motion of the spring from the moment of landing until the end of the motion tracking shown in Fig. 4

At time 3.374s the command signal (qc) switches from
zero to the sequence of ramps and sine waves mentioned
above. This portion of the action sequence is plotted in Fig. 4.
The command sequence consists of three ramps between 0
and 1rad, followed by a long ramp from 1rad to −1rad,
all at a speed of 4rad/s, followed by two more ramps at
speeds of 2rad/s and 1rad/s, followed by two cycles of a
sine wave at 1Hz. Observe that this command sequence asks
the robot to make large, fast movements.

During this tracking phase, the poles are set at −20, −20,
−20 and −1/Tc, all in units of rad/s, and the two introduced
zeros are at −20rad/s. For this robot, Tc varies between
0.2112s at qa = −1.0087rad and 0.287s at qa = 1.1343rad
in this action sequence.

The signals appearing on Fig. 4 are: the original command
signal, qc (i.e., not u as in (19)); the theoretical response of
the balance controller if the plant really were linear (labelled
qt); the actual response of the actuated joint on the springy
leg robot (labelled qa(springy)); and the actual response
on the rigid-leg robot (labelled qa(rigid)). The rigid-leg
response is obtained from a separate simulation in which the
initial conditions are set as close as possible to the actual

state of the springy-leg robot at time 3.374s. Fig.5 shows
the motion of the spring during landing (shaded area) and
tracking of the command sequence (after the shaded area).
At the initial touch-down, the spring reaches a compression
peak of about 6 cm which is 12% of the length of the leg.
During the tracking, the spring compression varies in a 2cm
range, which is 4% of the leg length.

It can be seen that there are some significant tracking
errors, particularly at the beginnings and ends of the ramps.
There are two main contributors to these errors. The greater
one is that the balance controller assumes that the plant
in Fig. 2 is linear, when in reality it is not. The lesser
one is an approximation in the way that the acausal filter
works: for simplicity, it uses values of Tc calculated for a
balanced configuration at each instant instead of a leaning
configuration.

It can also be seen that the springy-leg and rigid-leg
responses are very nearly the same. So, the presence of the
spring-loaded joint in the leg has had almost no effect on
the closed-loop behavior of the robot while following large,
fast motion commands; and this has happened even though
the the spring is relatively soft and the spring-loaded joint



makes significant movements. This is the main result of this
paper. One place where one can see a difference occurs at
the end of the second ramp, where the springy-leg response
shows a small amount of ringing that dies away in about
0.5s. There is also a little bit of ringing at the end of the long
ramp, and at the end of the sine wave. However, considering
the under-damped nature of the spring-damper pair in the
leg, there is remarkably little ringing overall, and what little
there is dies away quickly. So we can conclude that in this
experiment the balance controller has accomplished three
tasks simultaneously using only a single actuator: balance the
robot, follow the command signal, and suppress vibrations.

VII. CONCLUSION

This paper investigated the effect of a springy leg on
the balance controller described in [2], [3], which aims to
achieve and maintain balance in the presence of large, fast
motions. The purpose of this study was to investigate the
feasibility of a robot that uses a spring in its leg to help it
hop efficiently, but which also needs to balance on that leg.
It was shown that the balance controller can cope with the
large, fast motions that occur during landing, including small
bounces, and that it can track large, fast motion commands
after landing with almost the same accuracy as could be
achieved if the leg were rigid. And all that is necessary in
order to achieve this performance is that the spring-loaded
joint is instrumented, and that the measured motion of the
spring is taken into account when mapping from the robot’s
state variables to the balance controller’s state variables. The
controller itself does not need to know about the dynamics
introduced by the spring, although these dynamics are taken
into account when mapping the output of the controller to
a joint torque or acceleration command. It was also shown
that the balance controller can suppress vibrations caused by
the spring. Future work will investigate the effect of a series
elastic element in the actuated joint.
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