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Abstract— This paper presents a simulation study of the
balancing problem for a monopod robot in which the lower
body (the leg) has been modified to include a passively spring-
loaded prismatic joint. Such a mechanism can move by hopping
but can also stand and balance on a single point. We aim
to investigate the extent to which a balance controller can
deal with the large values and rapid changes in the spring-
damper forces, while controlling the absolute positions and
orientations of its parts and balancing on one leg. It can be
shown that a good performance is achieved if the spring-loaded
joint is instrumented and calibrated so that its position and
velocity, as well as the stiffness and damping coefficients, are
considered when calculating the controller state variables. We
also demonstrate the effectiveness of the balance controller by
adding a high-order sliding mode (HOSM) observer based on
the finite-time algorithm for robust parameter estimation of
the stiffness and damping coefficients. The stability analysis
and convergence proofs are presented based on the Lyapunov
stability theory. Numerical simulations are included to illustrate
the performance and feasibility of the proposed methodology.

I. INTRODUCTION

In the last decades, the spring-loaded inverted pendulum
(SLIP) mechanism has been widely applied in the biome-
chanical analysis of lower limb prostheses since it may
reproduce the kinematic pattern of the human swing leg
motion [1]. In this context, this paper is part of a series on
the design, build and demonstration of an experimental high-
performance 3D hopping and balancing robot, called Skippy
[2], which uses springs to help it achieve higher maximum
speed at launch; shock reduction on landing; and recycling
mechanical energy from one hop to another.

The original balance theory has already been tested on
different legged robots to balance [3], hop [4], and even walk
along a line (ninja walk) [5] by controlling separately the
walking and balancing actions. This balance theory, however,
cannot be directly applied to a scenario where more complex
mechanisms with passive joints are required to balance and
track a given trajectory because the null-space projection
matrix depends on all joint variables together, not only the
driven ones [6].

In this paper we investigate to what extent a planar double
inverted pendulum (DIP) system, in which the lower body
is split into a pair of bodies (leg and foot) connected by a
passively spring-loaded prismatic joint (see Fig. 2) [7], is able

Juan D. Gamba and Roy Featherstone are with the Department of
Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy. Email:
juan.gamba@iit.it, roy.featherstone@ieee.org.

Juan D. Gamba is also with Dibris, University of Genoa, Italy.
Antonio C. Leite is with the Faculty of Science and Technol-

ogy, Norwegian University of Life Science, 1430 Ås, Norway. Email:
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to successfully land and balance after suffering a 50% loss of
spring stiffness caused by mechanical damage to the spring
when the foot hits the ground. Moreover, the robustness
and stability of the balance controller described in [6] are
evaluated by performing a fast sequence of motions where
the legged robot is capable of tracking a trajectory while
balancing around a support point.

The decision to study only a planar system, rather than
a fully 3D one, can be justified by observing that hopping
is a nearly planar activity, so it makes sense to design the
robot so that the hopping movement, which also includes the
spring harmonic motion, is planar. This work aims to achieve
three main goals by developing a novel and improved balance
controller: (i) to demonstrate the ability of a spring-loaded
DIP system to perform high-speed motions without losing
its balance; (ii) to indirectly control the angular position
between the foot and the ground by using null-space motions,
relaxing the usual assumption of controlling the robot’s
movements based only on the motor-actuated joints; (iii)
to guarantee the stability and full operation of the SLIP
mechanism even when its spring loses part of its elastic
capacity due to degradation, failures, or partial ruptures.

Legged robots can be able to move faster or get over
obstacles by controlling their balance and jumping skills.
Such a control strategy should produce fast motions while
keeping, recovering or purposely losing the robot’s balance.
The well-known one-point balancing solutions [8], [9], [10]
are not fast enough for producing such motions, while [11],
[12] show better performance by adding special features
such as reaction wheels. The first hopping machine [13]
had an actuated prismatic leg with a springy behavior due
to the pneumatic actuator. However, such a device could
only hop, and balancing was out of the scope. A recent
robot, named Salto [14], resembles a miniature, electrically
actuated Raibert-style hopping machine, having an explicit
series elastic element to provide the springiness in the
leg. Salto has shown its ability to balance as well as hop
[4] using the balance controller in [6]. However, Salto’s
upper link is a reaction wheel, which means that balancing
has a negligible effect on the spring, and vice-versa. The
balance controller presented in [15] can drive a monopod
robot through fast motions without compensating the system
dynamics with a reasonable error when tracking a reference
trajectory. This performance can be improved by considering
the system dynamics when obtaining the actuated torque [6].
However, the presence of parametric uncertainties degrades
the system’s efficiency and may cause instability. Thus, an
observer is useful to estimate any given system uncertainty.



The parameter identification theory deals with the problem
of efficiently extracting data about the system dynamics from
its measurements. Most of these strategies involve mainly
least-squares (LS) methods, Bayes methods, Kalman filter
extensions, among others. Finite-time algorithms have also
demonstrated their effectiveness by identifying mechanical
parameters in combination with a recursive LS algorithm
where the design of the non-linear injection terms is based
on the generalized super-twisting algorithm (STA) [16],
leading to finite-time convergence [17], [18]. In [19] the
authors use STA and a non-recursive LS algorithm to identify
constant parameters in nonlinear systems [20]. In general,
the finite-time convergence is based on the adaptive control
theory, requiring to solve matrix-valued ordinary differential
equations and check the invertibility property of a matrix
online [21]. This scheme allows the reconstruction of the
unknown parameters in finite-time (FT) provided that a given
persistence of excitation (PE) condition holds [21]. A well-
known approach used to ensure the PE condition in adaptive
controllers is to add a bounded perturbation signal to the set-
point or trajectory, or even use it as the reference input, which
in contrast may degrade the specified regulation or tracking
performance [19]. Here, the PE condition can be guaranteed
by performing balance and trajectory tracking tasks.

There is an important distinction between the study pre-
sented here and those presented in [6], [22] on the topic of
balancing in the presence of other motions. In the earlier
works, it was assumed that the other motions were produced
by a motion controller that was executing a prescribed
motion command that was independent of the actions of the
balance controller, and that was known in advance. Then, the
robot could lean in anticipation of balance disturbances that
would be caused by executing the motion command. This
implies that the other motions are actuated, controlled and
known in advance. In contrast, we consider here a passive
springy joint, which is neither actuated nor controlled, and
which moves in response to the actions of the balance
controller.

In this work, we employ a modified version of the existing
balance controller [6] to achieve high performance in balanc-
ing and absolute angular position tracking tasks [23] for a
spring-loaded monopod, rather than a rigid-leg one (Fig. 1).
A high-order sliding mode (HOSM) observer algorithm is
used to estimate the external force generated by a viscoelastic
element (spring plus dashpot), located between the robot leg
and foot, identifying its elastic and viscous coefficients. The
stability analysis of the overall closed-loop system is demon-
strated by using the Lyapunov stability theory. Numerical
simulations are included to illustrate the performance and
feasibility of the proposed control methodology.

II. PROBLEM FORMULATION

Here, we address the balancing and hopping motion con-
trol problem for a spring-loaded inverted pendulum (SLIP)
based robot leg, in the presence of uncertainties and external
disturbances. We consider a real-world scenario where a
given monopod robot suffers a failure in its embedded

Fig. 1. Block diagram of the proposed balance control strategy.

array of spring-damper pairs during the landing phase. Some
factors that cause viscoelastic elements to fail are: fatigue, in-
adequate materials, poor manufacturing processes, improper
service and environmental effects. Then, using a high-order
sliding mode observer, the robot can achieve a successful
landing and balancing, while performing an efficient tracking
control for its absolute angular position, even in the presence
of such failure modes.

A. Single-leg robot models

At the tracking phase, we consider two single-leg robot
models: one with a springy leg and the other with a rigid
leg. The springy-leg robot is shown in Fig. 2, where the joint
variables are q1, q2 and q3 for joints 1, 2 and 3 respectively.
The coordinates of the robot’s centre of mass (CoM) relative
to the support point at the ground are given by c=(cx, cy).
Notice that a stationary balance condition is given by cx=0
and q̇i = 0 for i = 1, 2, 3. Here, since Joint 2 is a spring-
damper prismatic joint, let us define the absolute orientation
of the torso as qa :=q1 + q3. Then, when all joints are zero,
the leg is vertical, the leg’s length is l1 + l2, and the torso
is horizontal out to the right. The rigid-leg robot is obtained
from the springy-leg robot by locking Joint 2 in the position
it takes when the robot is balanced, the torso is horizontal
(so qa = 0), and the spring is holding the weight of the upper
leg and torso, which works out as q2 =−0.0282m.

Fig. 2. Legged robot model: joint variables, lengths and masses.

The springy-leg robot is a planar, three-link mechanism
in which Links 1, 2 and 3 are the lower leg (or foot), upper
leg and torso, respectively. Joint 1 is a passive revolute joint
that models the contact between the foot and ground; Joint 2
is a spring-loaded passive prismatic joint; and Joint 3 is the



actuated joint. The links’ mass and length parameters are
given as follows: m1 =0.2kg, m2 =0.5kg, m3 =2.0kg, l1 =
0.2m, l2 =0.3m, and l3 =0.5m. These values were chosen
to resemble the parameters of Skippy and Tippy [2], [3].
Each link i is modelled as a uniform thin rod, which means
that the CoM is half way along the rod, and the rotational
inertia about the CoM is Ii=mi l

2
i /12 for i=1, 2, 3. Positive

motion of a revolute Joint i rotates link i counter-clockwise
relative to link i− 1; and positive motion of Joint 2 extends
the leg, so that the actual length of the leg is l1 + l2 + q2. In
Fig. 2, joint variable q1 is positive and q3 is negative.

B. Simulation setup

Joint 2 is passively actuated by an array of two parallel
and identical springs with stiffness and damping coefficients
of 1000N m−1 and 8N s m−1, which results in an under-
damped system. The total stiffness is appropriate for a legged
robot to make small hops of around 1m and is soft enough
that Joint 2 moves significantly during landings and fast
balancing movements. In other words, the stiffness is low
enough to interfere significantly with the actions of the
balance controller. The simulator uses an accurate model of
compliant frictional contact between the foot and the ground
that allows the foot both to slip and to lose contact with the
ground. It resembles the contact model described in [15].
Contact forces acting on the foot along normal and tangential
directions are given by:

Fy = max(0,Kn z
3/2 +Dn z

1/2 ż) , (1)

Fx = clip(Kt z
1/2 u+Dt z

1/2 u̇ ,−µFy , µFy) , (2)

where z ∈ R and u ∈ R are the ground compression and
shear deformation, and µ > 0 is the coefficient of friction.
Moreover, Kn and Kt are the normal and tangential stiffness
coefficients, Dn and Dt are the normal and tangential damp-
ing coefficients, all assumed to be positive. The function
clip(u, α, β) = max(min(u, β), α) returns the value of u
clipped to the specified range [α, β]. The values of the
parameters used in the simulations are: Kt = 12.7 × 106

Dt=3.1× 105, µ=1, Kn=8.5× 106 and Dn=3.1× 105,
which are consistent with a hard floor and a high-friction
hard rubber foot.

III. BALANCE THEORY

In this section, the analysis presented in [6] is modified
for the planar robot mechanism shown in Fig. 2. The upper
joint (Joint 3) is commanded by the controller, the middle
joint (Joint 2) is actuated by a spring-damper element, and
the lower joint (Joint 1) represents the contact between the
bottom of the lower link (the foot) and the ground, being
therefore non-actuated. By representing the contact with a
revolute joint, in the control design (but not in the simulation)
we assume that the foot neither slips nor loses contact with
the ground and that the movement of the contact point as
the foot rotates can be neglected. The equation of dynamic

motion for this mechanism is given by [6]:H11 H12 H13

H12 H22 H23

H13 H23 H33

q̈1q̈2
q̈3

+

C1

C2

C3

 =

 0
Fs
τ3

 , (3)

where Hij are the elements of the joint-space inertia matrix,
q̈1, q̈2 and q̈3 are the joint acceleration variables, C1, C2

and C3 elements contain gravity, Coriolis and centrifugal
forces. Here, τ3 is the torque command at the actuated joint
(Joint 3) and Fs=−Ks q2−Ds q̇2 is the force produced by the
spring-damper system, with Ks and Ds being the stiffness
and damping coefficients.

Since Joint 1 is non-actuated, it follows that gravity is the
only force capable of exerting a moment about the support
point and, hence, changing the angular momentum of the
robot about this point. Let L be the total angular momentum
of the leg robot about the support point, then we have

L̇ = −mg cx , (4)

where m is the total mass of the leg robot, g is the magnitude
of gravitational acceleration (a positive number), and cx is
the horizontal coordinate of the CoM with respect to a point
at the bottom of the foot, that is assumed to be the point that
makes contact with the ground. Then, from (4) yields:

L̈ = −mg ċx ,
...
L = −mg c̈x , (5)

and following a special property of joint-space momentum,
as proven in Appendix B of [6], we can obtain

L = H11 q̇1 +H12 q̇2 +H13 q̇3 . (6)

Notice that L and L̈ are linear functions of the joint velocities
and x-axis CoM velocity respectively, while L̇ is a constant
multiple of x-axis CoM position. This implies that the
condition L= L̈= q̇2 =0 is equivalent to q̇i=0 for i = 1, 2, 3
assuming linear independence. Then, the balance conditions
for the springy-leg robot are simply given by L= L̇= L̈=0
[6], assuming that the passivity of Joint 2 ensures q̇2 → 0.
Note that any balance controller that successfully brings L to
zero will ensure the robot’s balance, but will not necessarily
lead q3 to the desired angle.

The next step is to add a fictitious joint between Joint 1
and the ground, which is a prismatic joint acting in the x-
axis direction. We will call it Joint 0 so as not to disturb
the numbering of the other three joints. Such a joint never
moves, so it does not affect the robot’s dynamics. However,
the dimension of the robot motion equation increases, which
now reads:

H00 H01 H02 H03

H01 H11 H12 H13

H02 H12 H22 H23

H03 H13 H23 H33




0
q̈1
q̈2
q̈3

+


C0

C1

C2

C3

 =


τ0
0
Fs
τ3

 , (7)

where τ0 is an external torque which assumes any value
necessary to ensure that q̈0 is equal to zero. The reason for
adding Joint 0 into the dynamic model of the springy-leg
robot (3) is that such a key idea provides us with an extra
motion equation linking the joint space dynamics with the



motions of the CoM. In this way, we transform an under-
actuated system into a virtually fully-actuated system. Then,
let p0 be the linear momentum of the robot along the x-axis
direction given by

p0 = m ċx = H01 q̇1 +H02 q̇2 +H03 q̇3 = −L̈/g , (8)

and τ0 be the external torque, due to the ground reaction
force acting on the robot, given by

τ0 = m c̈x = −
...
L/g . (9)

Then, combining (6) and (8), and neglecting the contribution
of the Joint 2 for the linear and angular momentum (i.e.,
q̇2 ≈ 0) results in:[

L

L̈

]
=

[
H11 H13

−g H01 −g H03

] [
q̇1
q̇3

]
. (10)

Then, to control the absolute angular position qa = q1 + q3
we use the following mapping[

q̇1
q̇3

]
=

[
1 0
−1 1

] [
q̇1
q̇a

]
, (11)

and the linear relationship (10) can be solved as:[
q̇1
q̇a

]
=

1

gD

[
−gH03 −H13

g(H01−H03) H11−H13

] [
L

L̈

]
, (12)

where D=H13H01−H11H03. This equation requires D 6= 0,
which holds in any configuration in which the robot is
physically capable of balancing itself [6]. So, q̇a can be
expressed as:

q̇a = Y1 L+ Y2 L̈ , (13)

where Y1 =(H01−H03)/D and Y2 =(H11−H13)/g D. It is
worth noticing that Y1 and Y2 vary with joint configuration
and can be expressed as simple functions of two physical
properties of the robot: (i) the time constant of toppling Tc,
which measures how quickly the robot falls if the balance
controller fails or simply does not act; (ii) the velocity gain
Gv , which measures the effect on the CoM velocity for a
unitary change in the velocity of the actuated joint [6]. The
time constant Tc is an explicit parameter of the acausal filter
to be presented in what follows.

IV. ROBOT BALANCE CONTROLLER

The goal of the balance controller is to calculate a suitable
value for

...
L to ensure that qa follows a given desired signal

qc, while maintaining the robot’s balance (Fig. 3). A state
feedback-based controller is given by [6]:

...
L := kdd L̈+ kd L̇+ kL L+ kq (qa − u) , (14)

where u is the input signal, typically a position command,
to be designed (see below). The feedback gains are obtained
via pole placement technique as:

kdd = −a3 , kd = −a2 + a0(Y2/Y1) , (15)
kL = −a1 , kq = −a0/Y1 , (16)

with

a0 = λ1λ2λ3λ4 , (17)
a1 = −λ1λ2(λ3 + λ4)− λ3λ4(λ1 + λ2) , (18)
a2 = λ1(λ2 + λ3 + λ4) + λ4(λ2 + λ3) + λ2λ3 , (19)
a3 = −λ1 − λ2 − λ3 − λ4 , (20)

where λ1, λ2, λ3 and λ4 are the desired values of the roots
of the corresponding closed-loop characteristic polynomial
∆(λ)=λ4 + a3λ

3 + a2λ
2 + a1λ+ a0. It can be shown that

if Y1 = 0 then λ= 0 is always a root of ∆(λ) regardless of
the choice of gains and, thus, Y1 6=0 is a stability condition
[6]. Here, λ1 is chosen to be the closed-loop bandwidth of
the controller, while λ2 and λ3 are destined to be cancelled
by two introduced zeros, mentioned below, and λ4 is chosen
to be −1/Tc in order to cancel a natural zero in the transfer
function. The input signal u for the control law (14) is
computed from the desired signal qc and its time-derivatives,
q̇c and q̈c, according to:

u = AF{ qc − (λ2 + λ3) q̇c + (λ2λ3) q̈c } . (21)

Notice that the formula (21) is designed to provide two
key features: (i) to introduce two zeros into the closed-loop
transfer function Gf (s) at the vicinity of λ2 and λ3, which
may cancel or attenuate the effect of the corresponding poles;
(ii) to apply an acausal filter, denoted by AF{·}, to the
desired signal which makes the robot lean in anticipation of
the balance disturbances that will be caused by future com-
manded motions [6]. In particular, AF creates a first-order
low-pass filter with time constant Tc, that runs backwards in
time from a point far enough in the future back to the present.
To implement this acausal filter, the controller needs to
know the expected short-term future value of qc. In general,
such an information can be provided by the robot’s high-
level controller, which usually interacts with task planning
algorithms and, therefore, knows what movements the robot
intends to perform next [6]. It is worth mentioning that

...
L

is the control signal computed by (14), but the output of the
control system has to be either a torque command τ3 or an
acceleration command q̈3 for Joint 3. Then, substituting (9)
into (7), and assuming that Ks and Ds are both uncertain,
we can rearrange the unknowns into a single vector yielding:

0 H01 H02 H03

0 H11 H12 H13

0 H21 H22 H23

−1 H31 H32 H33



τ3
q̈1
q̈2
q̈3

 =


−

...
L/g − C0

−C1

F̂s − C2

−C3

 , (22)

where F̂s is the estimated spring-damper force; and the
equation can be solved for both τ3 and q̈3. Now, let us apply
the acausal filter AF{·} to the desired signal qc such that
qf =AF{qc} and so on, such that:

qf(s) =
1

1− Tcs
qc(s) . (23)

For a given control law (14), with gains (15) and (16) under
(17)-(20), and the input signal (21), it can be shown that the



Fig. 3. Block diagram for the balancing control problem of the springy-leg robot, with k` = diag(kdd, kd, kL). The green lines indicate the balance
controller, and the purple lines denote the plant.

complete transfer function from qc to qa would be:

qa(s) =
a0(1 + Tcs)(1 + α1s+ α2s

2)

s4 + a3s3 + a2s2 + a1s+ a0
qc(s) , (24)

where α1 =−(λ2 +λ3) and α2 =λ2λ3. Then, by setting one
of the poles to be −1/Tc, the mechanism-dependent zero
can be removed, and the transfer function simplifies to three
poles and up to two zeros, all of them freely tunable by the
control system designer.

In the next section, we propose the use of a state estimator
(or observer) to provide an accurate estimate of the internal
force Fs, according to (22), by identifying the stiffness and
damping coefficients, Ks and Ds, of the viscoelastic element
located at the Joint 2, while the springy-leg robot is balancing
and tracking a given position desired signal.

V. PARAMETER IDENTIFICATION VIA HIGH-ORDER
SLIDING MODE (HOSM) OBSERVER

The lack of knowledge, or even the existence of uncertain-
ties in the system’s parameters, is a common obstacle in the
design of a model-based controller capable of successfully
executing a given task. Now, consider the practical case in
which one of the pairs of the spring-damper system fails
due to the rupture of the spring in the landing phase and
the internal force Fs drops down (e.g., 50%), affecting the
robot’s ability to balance and hop. Then, we propose a high-
order sliding mode (HOSM) observer to ensure a successful
landing, balancing, and steering for the springy-leg robot
while it estimates the stiffness and damping coefficients
of the viscoelastic element. It is worth noticing that the
controller introduced in [24] can be applied to the proposed
control problem given by (22) for similar balancing and
trajectory tracking tasks. However, less accuracy is expected
since the torque is directly computed from the control law
without compensating the robot dynamics.

Here, let us introduce the following notation: (i) H and
C denote respectively the inertia matrix and the gravity,
Coriolis and centrifugal, and friction forces for the springy-
leg robot, similar to (3); (ii) qx and qy are extra prismatic
joints used to describe the position of the robot’s foot with
respect to the world frame; (iii) positions, velocities and
accelerations of the robot are described by the vectors q,
q̇ and q̈ respectively, where q =

[
qx qy q1 q2 q3

]>
and so

on; (iv) the vector y =
[
qx qy q1 q2 qa

]>
satisfies q̇ = T ẏ

and q̈= T ÿ, similar to (11); (v) τ =
[
0 0 0 0 τ3

]>
denotes

the torque produced by the balance controller; (vi) F =[
0 0 0 Fs 0

]
denotes the internal force generated by the

spring-damper element; (vii) for a given matrix Q∈Rm×n,
the pseudo-inverse and transpose matrices of Q are denoted
by Q† and Q> respectively, the induced norm is given
by ||Q|| =

√
λmax(Q>Q), where λmax is the maximum

eigenvalue; (viii) d · cγ =| · |γ sgn(·) for γ>0, where sgn(·)
is the sign function.

Then, similarly to (7) and using the aforementioned nota-
tion, the motion dynamics for the springy-leg robot can be
rewritten simply as [6]:

ÿ = (HT )
−1 [τ + F − C

]
, (25)

or, in a more detailed manner, as:

ÿ = (HT )−1
[
τ−C

]
+(HT )−1


0 0
0 0
0 0
−q2 −q̇2

0 0


[
Ks

Ds

]
, (26)

which may be written more compactly as

ÿ = f(q, q̇, τ3) + Γ(q, q̇) θ , (27)

where f(·, ·, ·) is a nonlinear matrix function, Γ(·, ·) is the
regressor matrix and θ =

[
Ks Ds

]>
denotes the vector of

uncertain parameters to be identified. Here, without loss of
generality, we assume that Γ(·, ·) is measurable and bounded
in norm i.e., 0 < Γm ≤ ||Γ(q, q̇) || ≤ ΓM < ∞ for ∀q, q̇,
and satisfies the persistent excitation (PE) condition [25].
Selecting the last coordinate of the acceleration vector ÿ in
(27) we obtain:

q̈a = fl(q, q̇, τ3) + Γl(q, q̇) θ , (28)

where fl(·, ·, ·) is a nonlinear scalar function obtained from
the last row of f(·, ·, ·) and Γl =

[
Γl1 Γl2

]
is a regressor

vector obtained from the last row of the regressor matrix
Γ(·, ·). Here, the objective is to estimate θ using a nonlinear
parameter identification algorithm provided that q̇a and Γl are
both measurable from the system signals. Then, let us briefly
address the high-order sliding mode (HOSM) observer ap-
proach based on the finite-time algorithm and briefly describe
its convergence properties. A complete explanation for the
key features of the HOSM observer approach can be found
in [20], [26].

According to (28), a finite-time parameter identification
algorithm can be described by:

¨̂qa = −k1φ(e) + Γl(q, q̇) θ̂ + fl(q, q̇, τ3) , (29)
˙̂
θ = −α(e)

[
k2 0
0 k3

]
Γ>l (q, q̇) , (30)



where k1, k2, k3 are positive gains, e = ˙̂qa − q̇a is the
parameter estimation error where q̇a is obtained from the sum
of joint velocities q̇1 and q̇3 (both assumed to be measurable),
˙̂qa is the absolute angular velocity estimated by the super-
twisting or the fixed-time observer algorithms [20], θ̃= θ̂−θ
is the parameter identification error and θ̂ is the vector of
uncertain parameters to be identified by using the gradient-
type adaptation law given by (30). Finally, φ(e) and α(e)
are nonlinear functions of the parameter estimation error e
to be defined in what follows:

φ(e) = dec1/2 + e , (31)

α(e) =
1

2
dec0 +

3

2
dec1/2 + e . (32)

Now, we can state the following theorem about the conver-
gence properties of the finite-time algorithm.

Theorem 1: Consider the dynamic system described by (28)
and assume that the regressor vector Γl(q, q̇) is measurable
and satisfies the PE condition. Then, the finite-time parameter
identification algorithm (29)-(30) with (31)-(32) ensures the
uniformly finite-time stability property of the system errors,
and the following properties hold: (i) limt→∞ e(t) = 0; (ii)
limt→∞ θ̃(t)=0.

Proof: Let the system error dynamics be written as follows:
ė=−k1 φ(e)+Γl θ̃ and ˙̃

θ=−k2 α(e) Γ>l , and define the state
vector ζ = [φ(e) θ> ]>. Now, consider the following Lya-
punov function candidate: V (t, e, θ̃)=ζ> P (t) ζ where P (t)
is a symmetric, bounded and positive definite matrix satisfy-
ing Ṗ (t)=−φ′(e)[P (t)A(t)+A>(t)P (t)+Q(t)]. The func-
tion V (t, e, θ̃) is continuous and continuously differentiable
everywhere in R3, except on the set Ω = {(e, θ̃)∈R3 | e=0},
where it is not Lipschitz continuous and V̇ is not well defined
for the partial derivative φ′(e). Notice that when e = 0 in
isolated points it implies that α(e) = φ′(e)φ(e) and ζ̇ =
φ′(e)A(t)ζ. Then, the time-derivative of V takes the form:
V̇ (t, e, θ̃)=ζ>[ Ṗ (t) + φ′(e)P (t)A(t) + φ′(e)A(t)>P (t) ] ζ,
at the points where V is differentiable, which implies that
V̇ (t, e, θ̃) =−φ′(e)ζ>Q(t)ζ =−1/2

(
|e|−1/2 + 2

)
ζ>Q(t)ζ.

Notice that |e1|
1
2 ≤ ||ζ||2, with ||ζ||22 = ζ>ζ = |e| + 2|e| 32 +

e2 + ||θ̃||22 as the Euclidean norm of ζ. Thus, V̇ may be upper
bounded as follows: V̇ (t, e, θ̃) ≤ −c3 (1/2)(||ζ||2 + 2||ζ||22).
This expression holds when the trajectories of system errors
are outside of the set Ω, and it indicates that V̇ < 0 in the
complement of the set Ω. To remain on the set Ω for a given
time interval t∈ [t, t + T0], it is necessary that e(t) = 0 and
Γl θ̃(t)=0 during that interval, which violates the persistent
excitation (PE) condition. Then, it follows from Zubov’s
theorem [25] that the origin is asymptotically stable. For a
more detailed proof, please consult [20], [26].

VI. SIMULATION RESULTS

In this section, we present the simulation results of an
experimental case in which the springy-leg robot lands with
a velocity of −5 m s−1 along the y-axis. This is similar to
falling from a height of 1.3 m from the foot to the ground.
At the touch-down, one of the springs breaks when q2 is

compressed in 70 mm dropping the spring array’s force by
50% percent. Next, q2 reaches the maximum compression
at 164 mm due to the low stiffness in the spring’s array,
producing a small hop after all the elastic energy is released,
and lifting the robot 0.45 m from the foot to the ground.
When the robot lands for a second time the spring com-
presses 62 mm, and the balance controller is able to stabilize
the system after a small bounce, and then executes a motion
command consisting of a sequence of ramps and sinusoids.
The estimator and the balance controller work collectively
during the whole experiment, and the dynamic simulation of
the springy-leg robot can be seen in the accompanying video
clip.

In this simulation, we use the ode23t solver from MAT-
LAB with relative tolerance set to 10−6 and other parameters
chosen at their default values. Although the balance con-
troller assumes that the foot never loses contact nor slips with
the ground, in the simulation we have included the ground-
contact model presented in Section II-B.

Fig. 4. Evolution of the controller’s state variables from the moment of
landing until the robot has settled. The left-side scale applies to L̈, L̇ and
L, and the right-side scale applies to qa. The shaded area marks the flight
phase of the small hop.

Fig. 5. Evolution of the estimator’s parameters from the moment of landing
until the robot has settled. The left-side scale applies to K̂s and D̂s, and
the right-side scale applies to e.



The balance controller and the online estimator are
switched on since the beginning of the simulation. The
behavior over time of the controller’s state variables and
estimation variables are depicted respectively in Fig. 4 and
Fig. 5. The poles of the controller are λ1 = −20, λ2 = −20,
λ3 =−20, and λ4 =−1/Tc, all expressed rad s−1. The gains
of the estimator are: k1 =10.83, chosen so that it ensures the
persistent excitation condition, k2 =9.9×103 and k3 =18.26,
are selected according to the magnitude of θ and the desired
convergence rate of θ̂. From Fig. 4, it can be seen that qa
is initially pushed to about 0.08 rad by the momentum of
the landing before swinging slightly negative. Next, it rises
to nearly 0.32 rad during the small hop (shaded area) and
then pushed back to approximately −0.21 rad at the second
landing. Finally, after a small bounce qa is driven close to
zero. Referring to Fig.5, the estimated parameters θ̃ and e are
initialized to zero at the beginning of the simulation when
Ks=2000 N m−1 and Ds=16 N s m−1 at the spring’s array.
The failure occurs at t=0.0114 s when the q2 compresses to
70 mm. After the rupture, the force produced by the spring’s
array drops 50% to Ks=1000 N m−1 and Ds=8 N s m−1,
the estimated K̂s decreases to 550 N m−1 and creates a small
overshoot just before the small hop (shaded area). On the
other hand, D̂s oscillates to 1.274, 14.93 and 10.9 N s m−1

before the small hop. This oscillatory behavior may arise due
to the lack of persistent excitation of q̇a between the rupture
point and the small hop (before the shaded area). q2 only
shrinks and expands once during this period. Notice that θ̂
tends to drift away when the persistent excitation (q̇a ≈ 0)
is absent or very small, and the system continues moving
due to the elastic energy on the spring (spike drift between
1.15 s and 1.25 s in Fig. 5). Then, the robot’s foot loses
contact with the ground (small hop) between t = 0.1456 s
and t=0.7510 s, and reaches the maximum height of 0.45 m
from the foot to the ground. This flight period is shown
shaded in both Fig. 4 and Fig. 5. The balance controller does
not know that the foot has left the ground, and continues
using the model described in Section III, which assumes
that the robot’s foot is always on the ground. On the other
hand, the observer knows the position and velocity of the
whole system to the world frame. This flight period does not
significantly affect the controller’s and estimator’s stability,
and the robot has come to rest within about 1 s after the
second landing. Notice that the balance controller is assumed
to know the orientation of the robot at all times, e.g., using
an onboard IMU, so it always knows the correct values of
q1 and q̇1.

At the time of 2.011 s the desired signal qc switches
from zero to the sequence of ramps and sinusoids mentioned
before. This portion of the action sequence is plotted in Fig.
6. The desired sequence consists of three ramps between
0 and 0.8 rad, all at a speed of 3 rad s−1, followed by a
long ramp from 0.8 rad to −0.6 rad, followed by three more
ramps at speeds of −2.5rads−1, 2.5rads−1 and −1rads−1,
followed by three cycles of a sine wave at 1 Hz. Notice that,
such a desired sequence asks the robot to make large and fast
motions. Two zeros are introduced to the desired signal at

−20 rad s−1, as mentioned in (21). For this springy-leg robot,
Tc varies between 0.1562 s at qa = −0.6 rad and 0.2507 s
at qa = 0.8 rad in this action sequence. The behavior of the
signals is shown in Fig. 6.

The rigid-leg response is obtained from a separate simula-
tion in which the initial conditions are set as close as possible
to the actual state of the springy-leg robot at time 2.011 s.
At the landing phase, the spring reached a compression peak
of about 16.7cm which is 33.4% of the leg length. During
the tracking task, the spring compression varied in a range
of 5.5cm, which is 11% of the leg length.

In Fig. 6, it can be seen that there are some significant
tracking errors, particularly at the beginning and end of the
ramps. Three main factors contribute to such errors: (i) the
balance controller assumes that the plant in Fig. 3 is linear
when in reality it is not; (ii) for simplicity, the acausal filter
uses values of Tc calculated for a balanced configuration
at each instant instead of a leaning configuration; (iii) at
each of the balance configurations used to calculate Tc, it
assumes that q2 is constant for the whole tracking when in
fact it oscillates around 10% and reaches a peak of 20%,
causing tracking inaccuracies as shown in Figures 6 and 7.
Then, in this experimental case, we can conclude that the
balance controller combined with an HOSM observer has
accomplished three tasks simultaneously using only a single
actuator: balance the robot, follow the commanded signal,
and suppress vibrations, even in the presence of uncertainties
in the stiffness and damping coefficients of the viscoelastic
element.

VII. CONCLUDING REMARKS

This work has studied to what degree a springy leg
may affect the performance of the balance controller [6],
combined to an HOSM observer [26], when a failure occurs
in the spring-loaded device which loses 50% of its stiffness
due to a spring fracture. This strategy aims to keep the robot
in balance in the presence of large and fast motions, as well
as parametric uncertainties. One of the purposes of this work
was also to investigate the effectiveness of a monopod robot
that uses a compliant leg to help it to perform more complex
motions (e.g., higher hops, somersaults) without losing the
balance capability achieved in previous works with rigid-leg
robots. It was shown that the balance controller can cope
with large, fast motions that occur during landing, including
small bounces (Figures 4 and 5). Moreover, it can track large,
fast motion commands even with a low-noise spring force
estimation after landing, with almost the same accuracy that
could be achieved if the leg was rigid (Fig. 6). This study
also showed the possibility of performing an absolute motion
tracking, not only controlling the angle of the actuated joint
q3 but also the angle of the passive joint q1 by introducing
a state mapping for the balance controller given as (11).
Finally, it was also shown that the balance controller can
suppress vibrations caused by the spring-loaded device. In
future works, we intend to design a robust balance controller
based on [6], and investigate the effects of a series elastic
element in the actuated joint.
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Fig. 6. Absolute motion tracking performance of the balance controller. qc is the original desired signal (Eq. (21)), qt denotes the theoretical response
of the balance controller if the plant was really linear, qa (springy) is the actual response of the absolute joint on the springy-leg robot, and qa (rigid)
denotes the actual response on the rigid-leg robot.

Fig. 7. Motion of the spring during landing and tracking of the desired
signal in Fig. 6.
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