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Abstract— In this paper, we address a robust hybrid visual
servoing problem for a fixed target using an eye-in-hand camera
configuration, when the camera calibration parameters are
uncertain. The proposed solution combines the strengths of
image-based and position-based visual servoing approaches, by
defining a control error in both the image and task spaces,
in order to perform successful robotic fruit harvesting tasks.
A pre-trained Deep Convolutional Neural Network (DCNN)
encoder-decoder based on a minimized Segnet version is used
to perform the strawberries segmentation and extraction from
complex backgrounds. An image-based localization method,
based on ORB and BFMatcher algorithms, are used to extract
the image feature of the fruit for the vision-based control
algorithm. A robust control design is employed to cope with
the uncertainties in the calibration parameters of the camera-
robot system. To deal with possible singular configurations
that may arise during the task execution, we employ an
inverse-kinematics algorithm based on the transpose Jacobian
and interaction matrices. Simulation results are included to
demonstrate the effectiveness of the proposed methodology.

I. INTRODUCTION

Over the last years, there is a strong trend towards the
designing of autonomous robotic systems able to perform a
wide range of agricultural tasks in orchards, vineyards, poly-
tunnels and farms [1]. For example, weeds species recogni-
tion and killing, soft-fruit recognition and picking, as well as
plant phenotyping are just a few examples of how robots are
ruling fields around the world. The agricultural environment
introduces several challenges and difficulties, particularly, for
robotic harvesting and 3D navigation of mobile robots [2].
Indeed, changes in seasons and weather conditions, crop
growth and rotation, dense vegetation, different maturity
levels of fruits, the existence of diseases and fungi in plants,
all these factors create a dynamic and poorly structured
environment. Thus, the automatic fruit harvesting system has
to incorporate perception and cognition capabilities in the
gripper design [3] as well as intelligent sensors and systems
for fruit detection, recognition and localisation [4].

Applications for image segmentation have demonstrated
the effectiveness of classical computer vision algorithms for
detecting and localizing objects in well structured environ-
ments. Applications for object segmentation have demon-
strate the effectiveness of classic computer vision algorithms
for detecting and localizing objects in very controllable
situations. Mehta and Burks [5] have designed a vision-based
estimation and control system for robotic citrus harvesting
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based on the combination of large field-of-view of a fixed
camera and the accuracy of a mobile camera. Barth et al.
[6] have proposed a visual servoing approach which uses the
eye-to-hand camera configuration for sweet pepper harvest-
ing in dense vegetation. Image recognition and segmentation
for fruit detection in complex scenarios is still considered
as an open research problem, due to the occlusions, variable
lighting conditions and presence of modeling uncertainties
[4]. Fruit recognition and segmentation applications into non-
controllable scenarios still considered as an open research
topic, due to the high exposure to noise, light changes and
complex uncertainties. Deep encoder-decoder architectures
have been used recently to perform semantic segmentations
using complex backgrounds, due to its ability for learning
textures and image features of a given interest object. These
algorithms may be promising for carrying out detection
and localization tasks on unstructured scenarios [7]. Deep
encoder-decoder architectures have been used recently to
perform semantic segmentations into very complex back-
grounds, due to its ability for learning textures and image fea-
tures of a given interest object, these algorithms demonstrate
the possibility of carrying out detection and localization tasks
into non-controllable scenarios [7]. Hung et al. [8] introduce
a segmentation scheme using multispectral images, sparse
autoencoders, and Support Vector Machine (SVM) schemes
to segment leaves. Dias et al. [9] have proposed a robust
flower identification algorithm based on Fully Convolutional
Neural Networks (FCN), to demonstrate how FCNs are able
to deal with challenging image segmentation tasks. Dias et al.
[9] have proposed a robust flower identification algorithm
based on fully convolutional neuronal networks (FCNs), they
have demonstrated how FCNs are able to deal with very
challenging segmentation assignments.

In this work, we address the soft-fruit harvesting problem
by using a visual servoing approach based on the combi-
nation of computer vision, machine learning, and control
theory methodologies. A robust vision-based control scheme
which combines the Image-Based Visual Servoing (IBVS)
and the Position-Based Visual Servoing (PBVS) approaches
is designed to cope with parametric uncertainties in the
camera-robot system. In order to detect and localize different
strawberries into a scene, we use a pre-trained DCNN
encoder-decoder algorithm [10]. To achieve the segmentation
stage, the fruit localization method uses a combination of the
Oriented FAST and Rotated BRIEF (ORB) [11] and Brute-
Force Matching (BFMatcher) algorithms, due to their well-
known properties of robustness, fastness, and accuracy. 3D
Computer simulations results obtained with a Mitsubishi RV-



2AJ robot, performing a picking task of multiple and isolated
strawberries (to avoid clustering and other more complex
situations); are also included to illustrate the performance
and effectiveness of the proposed visual servoing scheme.

II. PROBLEM FORMULATION

In this work, we address the robotic fruit harvesting
problem using a visual servoing scheme with an RGB-D
stereo camera mounted on the robot end-effector (Fig. 1).
Here, the following notation is considered: pij ∈ R3 and
Rij ∈ SO(3) denote respectively the position vector and
orientation matrix of the frame Fj with respect to frame
Fi; Tij ∈ R4×4 is the homogeneous transformation matrix,
which denotes the pose of the frame Fj with respect to frame
Fi. In this context, the pose of the camera frame Fc with
respect to the base frame Fb is given by Tbc=Tbe Tec, say:

Tbc =

[
Rbc pbc
0T 1

]
=

[
RbeRec Rbe pec + pbe

0T 1

]
(1)

Here, we assume that (A1) the homogeneous transformation
matrix Tbe can be obtained from the forward kinematics map
by using, for example, the Denavit-Hartenberg convention.
In this case, implies that pbe=pbe(q) and Rbe=Rbe(q). For
simplicity, we also assume that (A2) the camera frame Fc
and the end-effector frame Fe are aligned only with respect
to z-axis, but the relative translation between their origins
and the relative orientation of their z-axes, denoted by φ,
may be uncertain. In this context, implies that Rec=Rec(φ).
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Fig. 1: Visual servoing system for robotic harvesting tasks.

The fruit harvesting task we consider consists of moving
the robot arm to the vicinity of the fruit, cut the stem using
a suitable device attached to the robot end-effector and store
the fruit in a storage device. The first goal is to solve the
image segmentation and interpretation problem, that is, to
detect and recognize the target object located in the robot
workspace by using a fully convolutional neural network
(FCNN) algorithm. Once the target object is tracked by
using a stereo vision system, the next step is to solve the
correspondence and 3D reconstruction problem, that is, to
compute the 3D coordinates of the fruit with respect to

the camera by using, for example, a simple triangulation
technique [12]. Thus, the pose of the target frame Ft with
respect to the base frame Fb is given by Tbt=Tbc Tct, say:

Tbt =

[
Rbt pbt
0T 1

]
=

[
RbcRct Rbc pct + pbc

0T 1

]
. (2)

where Tct is the homogeneous transformation matrix whose
entries can be computed from the application of the FCNN
algorithm and the triangulation technique. Finally, since the
homogeneous transformation matrix Tbt is computed, we can
employ an inverse kinematics-based algorithm to transform
the motion specifications, assigned to the robot end-effector
in the task space, into the corresponding joint space motions,
allowing for the successful execution of the desired motion.

III. SEGMENTATION APPROACH
The following section illustrates how the DCNN encoder-

decoder is used to learn a certain manifold or small sets
of such manifold, this applied to a segmentation assign-
ment, which consists in a pixel-wise classification task. A
simplified DCNN encoder-decoder version based on SegNet
architecture is used to perform the segmentation process. At
the encoder side, there are four convolutional layers with a
fixed kernel dimension of (7×7), activation function ReLU
[13] and filter with a dimension of 64, there are also three
max-pooling layers after every convolutional layer to add
small translation invariance to the model. Decoder side has
four deconvolutional layers with same kernel dimensions to
preserve the symmetry into the model, then three upsampling
layers are added before every deconvolutional layer.

A. Trainning Data-set
For application needs, it is quite difficult to obtain an

already-made data-set for strawberries semantic segmenta-
tion. A manual selection process with super-pixels [14]

Fig. 2: Data-set samples.

was used to create the different images annotations. An
annotation relates to the desired output for each input image,
it contains every pixel membership to a certain class.

The custom data-set (Fig. 2) contains fifty images of 480×
360 dimensions, where ninety and ten percent of it are used
for training and validation purposes.



B. Training

During segmentation, pixels are classified into back-
ground, strawberry and strawberry leaf. By adopting a spe-
cific class for background, it is possible to facilitate the fruit
extraction from background. The DCNN encoder-decoder
is not only able to learn textures and features information
from fruits but also from the background, that can become
very complex in some situations. The algorithm obtains
information from both classes which helps to make a more
accurate segmentation in comparison with the OHTA cascade
segmentation method introduced by Wei et al. [15]. Due
to the low-sampling obtained from the custom dataset a
Dropout layer was added after every convolutional and de-
convolutional layer, to avoid interdependent learning among
the neurons and take more advantage of the encoder-decoder
model [16].

Network training was carried out on a Desktop PC with
an Intel Core i7-7700 Processor, 8 GB RAM and a Nvidia
Geforce GTX 1080 GPU. Training was executed by running
220,000 steps, with four images by step, a dropout of 0.3
and a learning rate of 0.001, Adam optimizer was chosen
due to its computationally efficient architecture and ability
to deal with very noisy and/or sparse gradients [17], training
took around of twenty hours approximately into an Ubuntu
18.04 OS, Python, and TensorFlow-GPU framework.

After training the algorithm obtained an accuracy of 97%
and a Mean Intersection Over Union (MIoU ) of 60% wih
training examples, with validation examples the algorithm
obtained an accuracy of 96% and a MIoU of 59.5%.

C. Results

The following section presents the results obtained with
the simplified SegNet model at the strawberry segmentation
task. Fig. 3 demonstrates the results obtained from the DCNN
encoder-decoder algorithm with test images (unknown im-
ages for the network), images at (i) the column of the left side
demonstrates the algorithm input X , (ii) the middle column
denotes the expected output Y , (iii) the right column shows
the algorithm output Ŷ . The background class is denoted
by black color, the strawberry class by yellow color and the
strawberry leaves class by blue color. In this context, it is also
possible to see the difficulties to extract the strawberry leaves
due to its big similarity to the background class. Furthermore,
the algorithm is able to recognize and segment strawberries
successfully, which demonstrates its capacity for generalizing
over unknown data to make accurate predictions.

IV. VISUAL SERVOING APPROACH

In this work, we consider an RGB-D stereo camera
attached to the robot end-effector. Let pct = [xc yc zc ]T

be the coordinates of a 3D point expressed in the camera
frame Fc. From the perspective projection model, the 3D
point is projected in the image space as a 2D point with the
coordinates pv=[xv yv]

T expressed in pixels, say:[
xv
yv

]
=

f

zc

[
αx 0
0 αy

] [
xc
yc

]
+

[
xv0
yv0

]
, (3)

Fig. 3: Results test samples.

where {xv0, yv0, f, αx, αy} is the set of camera intrinsic
parameters: xv0 and yv0 are the coordinates of the principal
point; f is the focal length; αx and αy are the scaling
factors in pixel per millimeter. The 3D point is projected in
the image plane as a 2D point with normalized coordinates
pp=[xp yp]

T given by:

xp =
xv − xv0
fαx

, yp =
yv − yv0
fαy

. (4)

Now, we suppose that the robot end-effector is moving with
linear velocity vc ∈ R3 and angular velocity ωc ∈ R3 both
expressed with respect to the (instantaneous) camera frame
Fc. Then, using the well-known relationship of velocity
transformation between the target frame Ft and the camera
frame Fc, we obtain the following motion equation [18]:

ṗct = −vc −Q(ωc) pct , (5)

with
vc=RT

bc ṗbc , ωc=RT
bcQ(bωbc)Rbc .

Now, the key idea consists of computing the position in
the scene of the 3D points projected on the image plane of
the two cameras using a triangulation technique [12]. Let
z̄c := ln (zc/zd) ∈R be a supplementary normalized depth
coordinate, where zd is a depth scaling factor and ln (·)
denotes the natural logarithm function. Combining (4) into
(5) and adding z̄c, yields:

ẇ = Lw vc ,

 ẋp
ẏp
˙̄zc

 = Lw

[
vc
ωc

]
, (6)

with

Lw=


− 1

zc
0

xp
zc

xp yp −(1 + x2p) yp

0 − 1

zc

yp
zc

(1 + y2p) −xp yp −xp

0 0 − 1

zc
−yp
zc

xp
zc

0

 ,



where Lw ∈ R3×6 is the interaction matrix related to w ∈
R3, which denotes the 3D point coordinates expressed in the
image and operational spaces.

Notice that, since the target object is assumed to be fixed
with respect to the base frame Fb the desired values for
image features are assumed to be constant, and changes in
s and w depend only on camera motion.

A. HVS control design

The control goal is to drive a set of features w to the
desired values of the hybrid features wd say:

w → wd , ew = wd − w → 0 , (7)

where ew ∈ R3 is the hybrid image feature error. Since the
camera is attached to the robot end-effector (i.e., eye-in-hand
configuration) and vc = RT

bc v, we can expand (6), obtaining
the following control system:

ẇ = Lw R
T
bc J(q)u , (8)

where J(q) ∈R6×n is the geometric Jacobian of the robot
manipulator, and u∈Rn represents the joint control velocity
signal of the robotic arm u := q̇ [12]. From the time-
derivative of (7), we can design the velocity control signal
u as:

u := J∗(q)Rbc L
∗
w Λw ew , Λw = ΛT

w > 0 , (9)

where Λw is a proportional gain matrix, J∗ and L∗w are
generic matrices to be properly defined in order to guarantee
the asymptotic convergence of the image feature error ew
to zero, that is, limt→∞ ew(t) = 0. Notice that, to avoid
linearization of the error system, the algorithm can be
designed using the transpose of the Jacobian and interaction
matrices, J> and L>w . As a consequence, the algorithm is
computationally more efficient and the error dynamics will
be governed by a first-order nonlinear differential equation.
In this case, implies that: (i) if J∗(q) ≡ J>(q), it is
possible to deal with kinematic singularities since the control
algorithm does not require matrix inversion; (ii) if L∗w≡L>w ,
it is possible to cope with the ill-conditioning problem of
the interaction matrix Lw, even if the HVS system uses only
two image features to perform a 6-DoF task.

B. Stability and Robustness Analysis

In this section, we consider the fundamental issues related
to the stability and robustness of the proposed HVS con-
trol scheme. As previously discussed, the designed control
algorithm (9) is able to ensure the global or local stability
of HVS system, provided that the calibration parameters of
the camera-robot system are fully known. However, it is well-
known that the complete knowledge of the camera calibration
parameters and robot kinematics may not be satisfied from
the practical point of view, particularly when the eye-in-hand
camera configuration is used. Therefore, an approximation
or an estimation of the interaction matrix Lw, the rotation
matrix Rbc as well as the Jacobian matrix J(q) must be

realized [18]. In this case, the velocity control signal (9)
takes the form:

u := Ĵ∗(q) R̂bcL̂
∗
w Λw ew , (10)

where R̂bc =RbeR̂ec(φ), where φ ∈ R is the misalignment
angle between the camera frame Fc and the end-effector
frame Fe around the z-axes, assumed to be uncertain. To
analyse the stability and convergence properties of the HVS
control scheme, we use the Lyapunov stability formalism.
Consider the following positive-definite candidate Lyapunov
function defined by 2V (ew) = eTwΛwew. The time-derivative
of V along the system trajectories (7), (8) and (10), is given
by

V̇ (ew) = −e>w Λw Lw R
>
bc J(q) Ĵ∗(q) R̂bc L̂

∗
w Λw ew . (11)

The time-derivative of V is definite negative if the matrices
Ĵ∗(q) and L̂∗w are assumed to be full-rank, which can
be guaranteed respectively if the robot arm has redundant
degrees of freedom and the HVS control scheme uses one
or more than two image features. The condition V̇ <0 with
V >0 implies that the system trajectories uniformly converge
to ew=0, that is, the error system is asymptotically stable.

Moreover, since the robot kinematic and camera calibra-
tion intrinsic parameters are positive values, the presence
of uncertainties in any or both matrices, J∗(q) and L∗w, is
not capable to violate the condition of negative definiteness
(11). Accordingly, the misalignment angle φ between the
camera and the end-effector frames needs to be less than π

2
rad, in order to ensure the positive-definiteness property of
the matrix R̂ec. Under these assumptions it is possible to
guarantee, the asymptotic stability of the HSV system for
regulation tasks. Conversely, for tracking tasks, robust and
adaptive control strategies could be used to overcome the
restriction of the camera misalignment angle [19] and deal
with the existence of parametric uncertainties in the camera-
robot system [20], [21].

V. DESIGN AND IMPLEMENTATION

In this section, we describe the practical aspects for
designing and implementation of the proposed Hybrid Visual
Servoing (HVS) approach for robotic fruit harvesting. It is
well-known that from the calculation of the same image
features in both images obtained from the stereo vision
system, we can compute the 3D point coordinates of the
target in the operational space by using a triangulation
technique [12]. Moreover, recognizing and matching points
that belong to the same image feature in different scenes may
be a difficult task, along with object extraction or image
segmentation in complex backgrounds [22]. Segmentation
and extraction processes are executed with a pre-trained
DCNN encoder-decoder.

After extracting the object of interest from the scene,
we use the ORB algorithm [11] in order to obtain features
from both images and, then, the BF matcher algorithm is
selected due to its simplicity and acceptable performance for
identifying matching points in both images. BF matcher is a
searching algorithm, which finds the closest descriptor in the



second image set by point-by-point testing. Then the best ten
results are chosen to triangulate the object Cartesian position.
As noted, it is not possible to guarantee the absence of
outliers during this process, thus, performing a triangulation
with outliers features may result in a wrong target. Therefore,
it is not always possible to ensure the system stability by
performing an end-point open-loop PBVS control scheme,
to reach the corresponding 3D point coordinates obtained
from the triangulation.

Under this constraint, a HVS control scheme seems to
be the more appropriate to ensure the reliability and safety
of tasks performed by vision-based controllers. By having
a stable control loop for collecting one strawberry, the real
situation yields on collecting more than one strawberry in a
complex real-world scenario, where many strawberries may
be on the screen and a harvest-planning phase may not be
trivial for collecting the strawberries as fast as possible.
As expected, while performing the HVS control scheme
to approach an object of interest, the others objects are
considered as external disturbances to the control loop, which
can lead to system instability.

In order to deal with the disturbances presented during
the approaching phase towards a single object of interest in
the presence of other fruits, a self-updating tracking window
[23] is used to ensures the object visibility and be able to
compute its corresponding image features. After reaching the
desired distance, a final image-based height adjustment could
be carried out for positioning the gripper close to the fruit
stem, cut it and store the fruit in a storage box, completing
the harvesting task successfully.

VI. CONTROL VERIFICATION AND VALIDATION

In this section, we present simulation results for a robotic
fruit harvesting task. The simulations tests were carried out
considering the presence of parametric uncertainties in the
Jacobian matrix J , interaction matrix Lw and rotation matrix
Rec. We also assumed that robot end-effector is moving in
the neighborhood of singular configurations.

The robustness of the control algorithm will be evaluated
by choosing the misalignment angle between the camera and
the end-effector frames around the z-axis as φ = π/6 rad
and 10% of uncertainty in the length of the last link of the
robot arm as well as in the camera intrinsic parameters. The
control goal is to drive the object image feature w to the
desired image feature wd located at the camera center point
(xv0, yv0) with desired depth zd = 0.1 m. The numerical
simulations were executed in MATLAB and V-REP robot
simulator (see Fig.4). To illustrate the performance and
effectiveness of the HVS control scheme, simulations results
are shown in Fig. 5-7.

Fig. 5(a) and (b) shows the behavior over time of the
position of the image feature and the position error during the
regulation tasks, where we can observe a slight disturbance
at the beginning of the simulation due to the existence of the
misalignment between the camera and end-effector frames in
the z-axis. We can also note the asymptotic convergence of
both signals to zero. The time history of the HVS control

Fig. 4: Robotic fruit picking tasks on V-REP robot simulator.
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Fig. 5: Regulation task: (a) image feature position, (b)
position error.

signal is illustrated in Fig. 6(a) and (b), where it is possible
to verify the stable behavior of the linear and angular velocity
signals, obtained using the HVS control scheme. Fig. 7
shows the motion of multiple image features (strawberries)
from a given initial position “∗” to a desired final position
“◦”, it is possible to verify the satisfactory performance of
the proposed control scheme, in spite of the existence of
parametric uncertainties in the camera-robot system.

VII. CONCLUDING REMARKS

In this work, we have developed a hybrid visual servoing
control combining the benefits of PBVS and IBVS visual
servoing approaches. We have shown that the HVS approach
has robustness properties to cope with the ill-conditioning
problem of the Jacobian and interaction matrices, and also
to deal with parametric uncertainties for regulation tasks. By
using a self-updating tracking window approach it is possible
to guarantee a satisfactory performance of the proposed
solution during the task execution, even in the presence
of many targets. Numerical simulations and preliminary
practical results have shown the efficiency and feasibility
of using robot arms to perform semi-autonomous harvesting
tasks for soft fruits in orchards and poly-tunnels. Some pro-
posed topics for further investigation involve: (i) improve the
DCNN encoder-decoder algorithm to improve stem detection
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and segmentation to perform fruit harvesting under different
stems configurations and rotations. (ii) examine other DCNN
encoder-decoder algorithms for fruits recognition and image
segmentation based on atrous convolution schemes, in order
to avoid the loss of information at downsampling phases, also
test instance segmentation to deal with recognition problems
presented in occlusion and clustering situations;

REFERENCES

[1] Y. Edan, S. Han, and N. Kondo, “Automation in Agriculture,” in
Springer Handbook of Automation, S. Y. Nof, Ed. Springer-Verlag
Berlin Heidelberg, 2009, pp. 1095–1128.

[2] C. W. Bac, E. J. van Henten, J. Hemming, and Y. Edan, “Harvesting
Robots for High-value Crops: State-of-the-art Review and Challenges
Ahead,” Journal of Field Robotics, vol. 31, no. 6, pp. 888–911, 2014.

[3] D. Eizicovits, B. van Tuijl, S. Berman, and Y. Edan, “Integration of
Perception Capabilities in Gripper Design using Graspability Maps,”
Biosystems Engineering, vol. 146, pp. 98–113, 2016, special Issue:
Advances in Robotic Agriculture for Crops.

[4] A. Gongal, S. Amatya, M. Karkee, Q. Zhang, and K. Lewis, “Sen-
sors and Systems for Fruit Detection and Localization: A Review,”
Computers and Electronics in Agriculture, vol. 116, pp. 8–19, 2015.

[5] S. S. Mehta and T. F. Burks, “Vision-based Control of Robotic
Manipulator for Citrus Harvesting,” Computers and Electronics in
Agriculture, vol. 102, pp. 146–158, 2014.

[6] R. Barth, J. Hemming, and E. J. van Henten, “Design of an Eye-in-
hand Sensing and Servo Control Framework for Harvesting Robotics
in Dense Vegetation,” Biosystems Engineering, vol. 146, pp. 71–84,
2016, special Issue: Advances in Robotic Agriculture for Crops.

[7] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

[8] C. Hung, J. Nieto, Z. Taylor, J. Underwood, and S. Sukkarieh,
“Orchard fruit segmentation using multi-spectral feature learning,” in
2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Nov 2013, pp. 5314–5320.

[9] P. A. Dias, A. Tabb, and H. Medeiros, “Multispecies fruit flower
detection using a refined semantic segmentation network,” IEEE
Robotics and Automation Letters, vol. 3, no. 4, pp. 3003–3010, Oct
2018.

[10] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

[11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” pp. 2564–2571, Nov 2011.

[12] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control. Springer Publishing Company, Inc.,
2009.

[13] A. F. Agarap, “Deep learning using rectified linear units (relu),”
CoRR, vol. abs/1803.08375, 2018. [Online]. Available: http://arxiv.
org/abs/1803.08375

[14] S.-F. Chang, “Segmentation using superpixels: A bipartite graph
partitioning approach,” in Proceedings of the 2012 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), ser. CVPR ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 789–
796. [Online]. Available: http://dl.acm.org/citation.cfm?id=2354409.
2355103

[15] X. Wei, K. Jia, J. Lan, Y. Li, Y. Zeng, and C. Wang, “Automatic
Method of Fruit Object Extraction under Complex Agricultural Back-
ground for Vision System of Fruit Picking Robot,” Optik - Interna-
tional Journal for Light and Electron Optics, vol. 125, no. 19, pp.
5684–5689, 2014.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[18] F. Chaumette and S. Hutchinson, “Visual Servo Control - Part I: Basic
approaches,” IEEE Robotics Automation Magazine, vol. 13, no. 4, pp.
82–90, Dec 2006.

[19] T. R. Oliveira, A. C. Leite, A. J. Peixoto, and L. Hsu, “overcoming
limitations of uncalibrated robotics visual servoing by means of sliding
mode control and switching monitoring scheme.”

[20] A. C. Leite, F. Lizarralde, and L. Hsu, “Hybrid Adaptive Vision-Force
Control for Robot Manipulators Interacting with Unknown Surfaces,”
The International Journal of Robotics Research, vol. 28, no. 7, pp.
911–926, 2009.

[21] A. C. Leite and F. Lizarralde, “Passivity-based Adaptive 3D Visual
Servoing without Depth and Image Velocity Measurements for Uncer-
tain Robot Manipulators,” International Journal of Adaptive Control
and Signal Processing, vol. 30, no. 8-10, pp. 1269–1297, 2016.

[22] D. A. Forsyth and J. Ponce, Computer Vision - A Modern Approach,
2nd ed. Pearson Inc., 2012.

[23] H. Qian, Y. Mao, J. Geng, and Z. Wang, “Object tracking with self-
updating tracking window,” pp. 82–93, 2007.


